International Journal of Research in Management, Sciences and Technology

Issue - 14, Vol-07, pp. 25-30, Jul-Dec 2017
 CLEAR International Journal of Research in Management, Sciences and Technology

RESEARCH ARTICLE
EDGE GEODETIC SPANNING GRAPH AND EDGE GEODETIC EDGE MINIMAL NUMBER

Mr. Stalin. D
Research and Development Center, Bharathiyar University, Coimbatore Tamil Nadu, South.India-641 046,

ABSTRACT

Article History:

Received 15th Nov- 2017

Received in revised form $28^{\text {th }}$ Nov 2017

Accepted 20.12.2017
Published on 30.12.2017

Keyword: Edge geodetic number, edge geodetic edge minimal number, edge geodetic spanning graph.

Author:
Mr. Stalin. D

Email: stalindd@gmail.com

Abstract

Let $G=(V, E)$ be a connected graph with p vertices $V(G)$ and q edges $E(G)$. Let the edge geodetic number of G is $g_{1}(G)$. A subset M of E said to be edge geodetic edge minimal set of G if the edge geodetic number of spanning sub graph $G-M$ equals the edge geodetic number of G. That is $g_{1}(G-M)=g_{1}(G)$. The maximum cardinality of M is called the edge geodetic edge minimal number, is denoted by $\quad g_{E_{0}}(G)$ and the spanning sub graph $G-M$ is called edge geodetic spanning graph of G, denoted by G_{1} and $E\left(G_{1}\right)$ is denoted by q_{1}. Edge geodetic edge minimal number of some standard graphs are determined and we have the realization result for each pair of integers a, b and $3 \leq a \leq b$, there exist a connected graph G such that $g_{E_{0}}=b$, $g_{1}=a$ and $q=a+b$.

1. Introduction

By a graph $G=(V, E)$, we mean a finite undirected graph without loops or multiple edges. The order and size of G are denoted by p and q respectively. For basic graph theoretic terminology we refer to Harary [3,7]. The distance $d(u, v)$ between two vertices u and v in a connected graph G is the length of a shortest $u-v$ path in G. An
diameter, diam G of G. An edge geodetic set of G is a set $S \subseteq V$ such that every edge of G is contained in a geodesic joining some pair of vertices in S. The edge geodetic number $g_{1}(G)$ of G is the minimum order of its edge geodetic sets and any edge geodetic set of order $g_{1}(G)$ is an edge geodetic basis of G or a g_{1}-set of G. The edge geodetic number of a graph G is studied in [1, 8].

International Journal of Research in Management, Sciences and Technology

Impact Factor: 6.361

$N(v)=\{u \in V(G): u v \in E(G)\}$ is called the neighborhood of the vertex v in G. For any set S of vertices of G, the induced sub graph $\langle S\rangle$ is the maximal sub graph of G with vertex set S. If a sub graph of G has the same vertex set as G, then it is a spanning sub graph of G. A vertex v is a simplified vertex of a graph G if $\langle N(v)\rangle$ is complete. A simplex of a graph G is a sub graph of G which is a complete graph. If $e=\{u, v\}$ is an edge of a graph G with $d(u)=1$ and $d(v)>1$, then we call e a pendent edge, u a leaf and v a support vertex and $L(G)$ be the set of all leaves of a graph G.

Theorem1.1.[8] Let $\mathrm{G}=(\mathrm{p}, \mathrm{q})$ be a connected graph with exactly one vertex of degree p 1 ,then $g_{1}(\mathrm{G})=\mathrm{p}-1$.
Theorem 1.2 [8] Let $G=(p, q)$ be a connected graph with more than one vertex of degree $\mathrm{p}-1$, then $g_{1}(\mathrm{G})=\mathrm{p}$.

Theorem 1.3 [8] For the cycle $\mathrm{C}_{\mathrm{p}}(\mathrm{p} \geq 3)$,

$$
g_{1}\left(C_{p}\right)=\left\{\begin{array}{c}
2 \text { if } \mathrm{n} \text { is even } \\
3 \text { if } \mathrm{n} \text { is odd }
\end{array}\right.
$$

Edge Geodetic spanning Graph and Edge Geodetic Edge Minimal number

Definition 2.1 Let $G=(V, E)$ be a connected graph with p vertices $V(G)$ and q edges $\mathrm{E}(\mathrm{G})$ and edge geodetic number $g_{1}(\mathrm{G})$. A subset M of E is said to be an edge geodetic edge minimal set of G if the edge geodetic number of spanning sub graph G-M equals the edge geodetic number of G . That is $g_{1}(\mathrm{G}-\mathrm{M})=g_{1}(\mathrm{G})$. The maximum cardinality of M is called the edge geodetic edge minimal number, is denoted by $g_{E_{0}}(\mathrm{G})$ and the spanning sub graph G-M is called edge geodetic spanning graph, denoted by G_{1} and $\mathrm{E}\left(G_{1}\right)$ is denoted by q_{1}.
www.thaavan.com
Example:2.2 For the graph given in Figure 2.1, $S=\left\{v_{1}, v_{3}, v_{4}, v_{6}\right\}$ is an edge geodetic set and hence the

Figure 2.1
edge geodetic number is 4 . Let $\mathrm{M}=\left\{v_{1} v_{2}\right.$, $\left.v_{2} v_{3}, v_{3} v_{4}\right\}$. Then the graph G_{1} is given in Figure 2.2 Since the edge geodetic number of G_{1} is $4, \mathrm{M}$ is an edge minimal set of G and hence $g_{E_{0}} \geq 3$. It is easily verified that there is no edge minimal set of cardinality greater than 3 . Therefore $g_{E_{0}}=3$.

Figure 2.2

Remark 2.3 There can be more than one edge geodetic edge minimal set for a graph. For the graph in Figure 2.1 $M_{1}=\left\{v_{1} v_{2}, v_{2} v_{3}\right.$, $\left.v_{3} v_{4}\right\} \quad M_{2}=\left\{v_{1} v_{6}, v_{6} v_{5}, v_{5} v_{4}\right\}$ are the two edge geodetic edge minimal set.

Theorem2.4. No bridge edge belongs to any edge geodetic edge minimal set

International Journal of Research in Management, Sciences and Technology

Impact Factor: 6.361

Proof: Suppose $e \in M$ is a bridge edge of G ,then 〈E-M> will be a disconnected graph, which is a contradiction. Hence no bridge edge belongs to any edge geodetic edge minimal set of G.

Corollary 2.5 No pendent edge belongs to edge geodetic edge minimal set.
Proof: The proof follows the Theorem 2.4.
Corollary 2.6 For any tree T, $g_{E_{0}}(T)=0$.
Proof: The proof follows the Theorem 2.4 and Corollary 2.5 .

Theorem: 2.7. For any connected graph $0 \leq g_{E_{0}}(G) \leq \mathrm{q}-\ell$, where ℓ is the number of bridge edges.

Proof: The proof follows the Theorem 2.4.
Theorem2.8. For any connected graph G, $0 \leq g_{E_{0}}(G) \leq \mathrm{q}-1$.

Proof: Any edge geodetic set needs at least two vertices, minimum one edge and hence $g_{E_{0}}(G) \leq \mathrm{q}-1$. Also set of all vertices of G form an edge geodetic basis, maximum q edges and hence $g_{E_{0}}(G) \geq 0$.

Remark 2.9 The equality in the Theorem 2.8 hold for K_{2} and $C_{n} . g_{E_{0}}\left(K_{2}\right)=0$ and for even cycle $C_{n}, g_{E_{0}}\left(C_{n}\right)=\mathrm{q}-1$. Also the in equality in the Theorem 2.8 is strict. For the graph G given Figure 2.3, $\mathrm{S}=\left\{v_{1}, v_{2}, v_{4}\right\}$ is an edge geodetic basis and hence the edge geodetic number $g_{1}(\mathrm{G})=3, \mathrm{M}=\left\{v_{1} v_{5}, v_{2} v_{3}\right.$ \} is an edge geodetic edge minimal set of G and hence $g_{E_{0}}(G)=2$.Thus $0<g_{E_{0}}(G)<\mathrm{q}-$ 1.
www.thaavan.com

Figure 2.3

Theorem2.10 For any cycle
$g_{E_{0}}\left(C_{p}\right)=\left\{\begin{array}{c}1 \text { if } p \text { is even } \\ 0 \text { if } p \text { is odd }\end{array}\right.$

Proof:

Case (i) p is even.
Let e be an edge of C_{n} then $C_{n}-e$ is a path so that $g_{E_{0}}\left(C_{n}-e\right) \geq 1$. Since G-M is disconnected for $|\mathrm{M}| \geq 2$, by the Theorem 1.3, it follows that $g_{E_{0}}\left(C_{n}\right)=1$.

Case (ii) p is odd. $\operatorname{Let}\left\{e_{1}, e_{2}, e_{3}, \ldots . e_{p}\right\}$ be the edges of C_{p} and $\left\{u_{1}, u_{2}, \ldots, u_{p}\right\}$ be the vertices. Take $e_{i}=u_{i} u_{i+1}$ then G- $\left\{e_{i}\right\}=u_{1}$, $u_{2}, \ldots, u_{i-1}, u_{i+2} \ldots \ldots . . . u_{\mathrm{p}}$ form a path. For path the edge geodetic number is 2 only. Also G$\left\{e_{i,} e_{j}\right\}$ become a disconnected graph. Hence removal of any number of edges from C_{n}, the resultant graph is disconnected, cannot give the edge geodetic number 3. Hence $g_{E_{0}}\left(C_{p}\right)=0$ if n is odd.

Theorem2.11. If G is a Simple graph of order p with exactly one vertex of degree p 1 then edge geodetic spanning graph is a Star and $g_{E_{0}}(G)+g_{1}(G)=\mathrm{q}$.

International Journal of Research in Management, Sciences and Technology

Impact Factor: 6.361

Proof: Let G be a simple graph of order n with exactly one vertex of degree p-1. Let $\left\{u_{1}, u_{2}, \ldots, u_{p}\right\}$ be the vertices of G. Without loss of generality assume that the degree of u_{i} is p-1 Fix the vertex u_{i} which has the degree $\mathrm{p}-1$ and collect all the edges from remaining vertices $\left\{u_{1}, u_{2}, \ldots . u_{i-1}, u_{i+1} \ldots\right.$, $\left.u_{p}\right\}$ which are not adjacent with u_{i}. Hence the resultant graph is a star of order p . Removal of any edges from star form a disconnected graph. Also the edge geodetic number of star is $\mathrm{p}-1$. Hence star is the edge geodetic spanning graph of order p and $q_{1}=\mathrm{p}-1$, which is equal to $g_{1}(G)$. Also $g_{E_{0}}(G)=\mathrm{q}-\mathrm{q}_{1}=\mathrm{q}-g_{1}(G)$ and so that $g_{E_{0}}(G)+g_{1}(G)=\mathrm{q}$.

Theorem 2.12 If G is a Simple graph of order n with exactly one vertex of degree p 1 then edge geodetic edge minimal number $g_{E_{0}}(G)=q-\Delta(G)$.

Proof: The proof follows from the Theorem 2.11.

Theorem2.13 for any Wheel $W_{1, p}$ $g_{E_{0}}(G)=\mathrm{p}$.
Proof: Let G be Wheel graph .Wheel has exactly one vertex of degree p and remaining p vertex of degree 3. Hence the total number of edges is $\mathrm{q}=\frac{p+3 p}{2}=2 \mathrm{p}$. Since exactly one vertex of degree p, by Theorem 2.11 the edge geodetic spanning graph of G is a star of order $\mathrm{p}+1$ and has edges p . Hence $g_{E_{0}}(G)=2 \mathrm{p}-\mathrm{p}$. Hence $g_{E_{0}}(G)=\mathrm{p}$.

Theorem 2.14 If G be a simple graph with more than one vertex of degree n - 1 then the edge geodetic edge minimal number $g_{E_{0}}(G)=\mathrm{q}-2 \Delta(G)+1$.

Proof: Let G be a simple graph with at least two vertices of degree $\mathrm{p}-1$. Let $\left\{u_{1}, u_{2}, \ldots\right.$,
www.thaavan.com
$\left.u_{p}\right\}$ be the vertices of G. Without loss of generality assume that degree of u_{i} and u_{j} is $\mathrm{p}-1$. Fix the vertices u_{i} and u_{j}.collect all the edges of $\left\{u_{1}, u_{2}, \ldots u_{i-}\right.$ $\left.{ }_{1}, u_{i+1} \ldots u_{\mathrm{j}-1}, u_{j+1} \ldots u_{p}\right\}$ which are not adjacent to u_{i} and u_{j}.Thus the new graph has two vertices of degree $\mathrm{p}-1$ and remaining $\mathrm{p}-2$ vertices of degree 2 . Since G has more than one vertex of degree $\mathrm{p}-1$, edge geodetic number $g_{1}(G)=p$. Hence the resultant graph has edge geodetic number p . So the graph is edge geodetic spanning graph of G. If removal of any more edge from G than the above condition degree of u_{i} or u_{j} will reduce to $n-2$ or less and hence has edge geodetic number less than n and cannot be the edge geodetic spanning graph of G so that $q_{1}=$ $\frac{2 \times(p-1)+(p-2) \times 2}{2}$
$=2 \mathrm{p}-3$.Therefore $g_{E_{0}}(G)=\mathrm{q}-(2 \mathrm{p}-3)$
$=\mathrm{q}-2(\mathrm{p}-1)+1$
$=\mathrm{q}-2 \Delta(G)+1$.
Theorem 2.15 For any complete graph K_{n}, $g_{E_{0}}\left(K_{n}\right)=\frac{(p-2)(p-3)}{2}$.
Proof: For the complete graph of order p has $\frac{p(p-1)}{2}$ edges and $\Delta(G)=\mathrm{p}-1$, the proof follows from the Theorem 2.14.

Therorem2.16

$$
g_{E_{0}}\left(K_{m n}\right)=\left\{\begin{array}{rl}
0, & \text { if }
\end{array} \quad m=1\right.
$$

Proof:

Casei: If $\mathrm{m}=1$, the proof follows the Theorem 2.11
Case ii: if $\mathrm{m}=\mathrm{n}$
Let $U=\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$ and $W=\left\{w_{1}, w_{2}, \ldots\right.$, $\left.w_{n}\right\}$ be a bipartition of G. Let $\left\{e_{11}, e_{12}, e_{13}, \ldots . e_{m m}\right\}$ such that $e_{1 i}$ ($\mathrm{i}=1,2, \ldots . \mathrm{m}$) is incident with u_{1} and w_{i} , $e_{2 i}(\mathrm{i}=1,2, \ldots . \mathrm{m})$ is incident with u_{2} and w_{i} an so on. Collect all the edges except

International Journal of Research in
 Management, Sciences and Technology

Impact Factor: 6.361

e_{11}, e_{12} from $u_{1}, \quad \mathrm{e}_{22}$ from $\mathrm{u}_{2}, \quad \mathrm{e}_{32}, \mathrm{e}_{33}, \mathrm{e}_{34}$ from u_{3}, e_{44} from $\mathrm{u}_{4}, \mathrm{e}_{54}, \mathrm{e}_{55}, \mathrm{e}_{56}$ from $\mathrm{u}_{5}, \mathrm{e}_{66}$ from $\mathrm{e}_{6} \ldots \ldots, e_{m m}$ from u_{m} if m is odd and $e_{m m}$ from u_{m} if m is even. Hence the resultant graph be a tree such that u_{1}, u_{3},
$u_{m-1}, w_{2}, w_{4}, \ldots \ldots \ldots . w_{\mathrm{m}}$ are end vertices if m is odd and $u_{1}, u_{3}, \ldots \ldots \ldots \ldots . . . u_{m}$, $w_{2}, w_{4}, \ldots \ldots \ldots w_{\mathrm{m}-1}$ are end vertices if m is even.Also the resulting graph is a tree with m end vertices and hence the edge geodetic number is m which is same as the edge geodetic number of $\mathrm{G}=\mathrm{K}_{\mathrm{mm}}$. Removal of any more edges from the resulting graph, the graph becomes disconnected and hence no spanning subgraph graph exist with same edge geodetic number m .Hence the tree is the edge geodetic spanning graph of G with $\mathrm{m}-2$ vertices of degree $3, \mathrm{~m}$ vertices of degree one and 2 vertices of degree 2.Therefore the edge geodetic spanning graph of G has $\frac{3(m-2)+m+4}{2}=2 \mathrm{~m}-1$ edges. Also the edge geodetic edge minimal number $g_{E_{0}}=\mathrm{m}^{2}-(2 \mathrm{~m}-1)$. That is $g_{E_{0}}=(\mathrm{m}-$ $1)^{2}$ if $\mathrm{m}=\mathrm{n}$.

Theorem:2.17 Let G be a connected graph with exactly one vertex of degree $\mathrm{p}-1$ then $g_{E_{0}}=\sum_{i=1}^{p-1} \frac{d\left(v_{i}\right)}{2}-\frac{p-1}{2}$.
Proof: Let $\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$ be the vertices of G with exactly one vertex v_{p} (say)of degree $\mathrm{p}-1$.By the Theorem 2.12 ,edge geodetic edge minimal set contains E (G)-number edges in a star with central vertex v_{p} is [$\mathrm{d}\left(\mathrm{v}_{1}\right)-1+\mathrm{d}\left(\mathrm{v}_{2}\right)-1+$. \qquad $\left.+\mathrm{d}\left(\mathrm{v}_{\mathrm{p}-1}\right)-1\right] / 2$ $=\sum_{1}^{p-1} \frac{d\left(v_{i}\right)}{2}-\frac{p-1}{2}$.

Therorem2.18. Let $\left\{\mathrm{x}, \mathrm{y}, v_{1}, v_{2}, \ldots, v_{p-2}\right\}$ be the vertices of G, where x and y are universal vertices of G. Then
$g_{E_{0}}=\sum_{i=1}^{p-2} \frac{d\left(v_{i}\right)-2(p-2)}{2}$.

www.thaavan.com

Proof: Let G be the connected graph with more than one vertex of degree p -1. Let $\left\{\mathrm{x}, \mathrm{y}, v_{1}, v_{2}, \ldots, v_{p-2}\right\}$ be the vertices of G . Then the smallest graph with exactly two vertices of degree $\mathrm{p}-1$ has exactly two vertices of degree $\mathrm{p}-1$ and $\mathrm{p}-2$ vertices of degree 2 . Also the edge geodetic number of the resultant graph is p. Hence the edge geodetic edge minimal set contains $=\left(d\left(v_{1}\right)-2+d\left(v_{2}\right)-2+\right.$
$\left.\cdots \ldots \ldots \ldots+d\left(v_{p-2}\right)-2\right) / 2$. Hence $g_{E_{0}}=\sum_{i=1}^{p} \frac{d\left(v_{i}\right)-2(p-2)}{2}$.

Theorem 2.19 Let $\mathrm{G}=(\mathrm{p}, \mathrm{q})$ be a connected graph with $\mathrm{g}_{1}(\mathrm{G})=\mathrm{p}$ then $\mathrm{q} \geq 2 \mathrm{p}-3,(\mathrm{p} \geq 2)$.

Proof: We prove this theorem by induction on p ($p \geq 2$). Suppose $p=2$, then $G=K_{2}$, the result is trivially true. Assume that for any connected graph with k vertices and $\mathrm{g}_{1}(\mathrm{G})=\mathrm{k}$ has $\mathrm{q} \geq 2 \mathrm{k}-3$ edges. Let G^{\prime} be a connected graph obtained from G by adding a new vertex v .Let $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ be the vertices of G and S be the edge geodetic basis of G . Since $g_{1}(G)=k$ then S is the unique edge geodetic basis of G and either G has more than one vertex of degree $\mathrm{k}-1$ or G has no vertex of degree $\mathrm{k}-1$.

Case(i).Suppose G has more than one vertex of degree k-1.Let $d\left(v_{i}\right)=d\left(v_{j}\right)=k$ 1.Add new vertex v to G such that v is adjacent to both $\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}$. Hence $\mathrm{d}\left(\mathrm{v}_{\mathrm{i}}\right)=\mathrm{d}\left(\mathrm{v}_{\mathrm{j}}\right)=\mathrm{k}$ so that $\mathrm{g}_{1}\left(\mathrm{G}^{\prime}\right)=\mathrm{k}+1$. Also $\mathrm{q} \geq 2 \mathrm{k}-3+2=2(\mathrm{k}+1)$ 3.Hence the result is true.

Case(ii).Suppose no vertex of G has degree p -1.Let S^{\prime} be an edge geodetic basis of G'. Add a new vertex v such that v is adjacent to any two adjacent vertices $\left.\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j},(} \quad \mathrm{i} \neq \mathrm{j}\right)$, $(1 \leq \mathrm{I}, \mathrm{j} \leq \mathrm{k})$. Hence v becomes an extreme vertex. Clearly $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots \ldots \ldots \ldots . . \mathrm{v}_{\mathrm{i}}$. ${ }_{1}, \mathrm{v}_{\mathrm{i}+1}, \ldots . \mathrm{v}_{\mathrm{j}-1}, \mathrm{v}_{\mathrm{j}+1} \ldots . \mathrm{v}_{\mathrm{k}}, \mathrm{v} \in \mathrm{S}^{\prime}$.To prove $g_{1}\left(G^{\prime}\right)=k+1 \quad$ Suppose both $\left.\quad v_{i}, v_{j,,(} \quad i \neq j\right)$,

International Journal of Research in Management, Sciences and Technology

Impact Factor: 6.361

$(1 \leq I, j \leq k)$ does not belongs to S^{\prime}, then the edge $v_{i} \mathrm{v}_{\mathrm{j}}$ cannot lies on geodesic joining of pair of vertices of S^{\prime}. Hence anyone v_{i}, v_{j} or both v_{i}, v_{j} belongs to S^{\prime}. Suppose v_{i} does not belongs to S^{\prime}, then the edge $v_{i} v_{j}, v_{i v} v$ cannot lies on the geodesic joining of pair of vertices of S^{\prime}. Similarly if v_{j} does not belongs to S ' then the edges $\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{j}}, \mathrm{v}_{\mathrm{j}}, \mathrm{v}$ cannot lies on the geodesic joining of pair of vertices of S^{\prime}. Hence both v_{i}, v_{j} belongs to S^{\prime} and so that $\mathrm{g}_{1}\left(\mathrm{G}^{\prime}\right)=\mathrm{k}+1$. Also $\mathrm{q} \geq 2 \mathrm{k}$ -$3+2=2(k+1)-3$. Hence $q \geq 2 p-3,(p \geq 2)$.

Theorem2.20: For each pair of integers a, b and $3 \leq \mathrm{a} \leq \mathrm{b}$, there exist a connected graph G such that $\mathrm{g}_{1}(\mathrm{G})=\mathrm{a}, g_{E_{0}}=b$ and $\mathrm{q}=\mathrm{a}+\mathrm{b}$.

Proof: Case(i) $\mathrm{a}=\mathrm{b} \geq 3$ Consider the graph wheel $\mathrm{G}=K_{l, a}$, since G has exactly one vertex of degree ' a ', $g_{1}(G)=a$ and by the Theorem 2.14, $g_{E_{0}}=a$. Hence $\mathrm{a}=\mathrm{b}$.

G Figure 2.4

Case(ii) $3<\mathrm{a}<\mathrm{b}$. , let G be the graph obtained from the path on three vertices $P: u_{1}, u_{2}, u_{3}$ by adding $a-2$ new vertices $v_{1}, v_{2}, \ldots, v_{a-2}$ and joining each $v_{i}(1 \leq i \leq a-2)$ with u_{1}, u_{2}, u_{3} and is shown in Figure 2.4. Also, since u_{2}
www.thaavan.com
is the only full degree vertex of G by Theorem1.1, $g_{1}(G)=a-2+3-1=a$ and by Theorem 2.12, $g_{E_{0}}=b=\mathrm{q}-\mathrm{a}$.

References

[1] M. Atici, on the edge geodetic number of a graph. International Journal of Computer Mathematics 80(2003), 853-861.
[2] F. Buckley, F. Harary and L.V. Quintas, Extremal results on the geodetic number of a graph, Scientia A2 (1988) 1726.
[3] F. Buckley and F. Harary, Distance in Graphs, Addition-Wesley, Redwood City, CA, 1990.
[4] G. Chartrand, F. Harary and P. Zhang, On the Geodetic Number of a graph, Networks. 39(1), (2002), 1-6.
[5] E. J. Cockayne, S. Goodman and S.T. Hedetniemi, A linear algorithm for the domination number of a tree, Inform. Process. Lett. 4(1975), 41-44.
[6] A. Hansberg, L. Volkmann, On the Geodetic and Geodetic domination number of a graph, Discrete Mathematics 310(2010), 2140-2146.
[7] F. Harary, Graph Theory, Narosa Publishing House (1998).
[8] A. P. Santhakumaran and J. John, Edge Geodetic Number of a Graph, Journal of Discrete Mathematical Sciences and Cryptography 10(3), (2007), 415-432.
[9] A.P. Santhakumaran, P.Titus and J.John, The upper Connected Geodetic Number and Forcing Connected Geodetic Number of a Graph, Discrete Applied Mathematics, 157(2009), 1571-1580.
[10] A.P. Santhakumaran, P.Titus and J.John, On the Connected Geodetic Number of a graph, J.Combin.Math.Combin.Comput, 69(2009) 219-229.

